Study of Forces and Dynamic Coefficients in Whirling and Eccentric Labyrinth Seals Using ANSYS-CFX

نویسنده

  • Elizabeth D. Thompson
چکیده

Labyrinth seal force estimates are important to the prediction of the stability of turbomachinery. The force prediction methods fall into several categories: experiments, bulk flow analysis, and finite volume analysis. Finite volume analysis can be split into two subcategories: selfdeveloped and commercial. In this research, a commercial computational fluid dynamics (CFD) program called ANSYSCFX was used to predict the forces generated in a labyrinth seal whirling at specified speeds. The results were compared to data from VT-FAST, a bulk flow code, and TASCflow, another commercial CFD program. It was shown that there were discrepancies among the results, and several hypotheses were made as to the reason for these discrepancies. Additionally, ANSYS-CFX was used to study the effect of labyrinth seal eccentricity ratio on the resultant force generated. It was shown that the radial force component within the seal behaved linearly with respect to eccentricity ratio. However, the tangential force component had no distinguishable relationship with the eccentricity ratio. It was hypothesized that the lack of a relationship was caused by the small fluctuations in the inlet swirl. Although the inlet swirl varied very little at each eccentricity ratio, it was shown there was a relationship between the tangential force and inlet swirl.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Helically Grooved and Circumferentially Grooved Labyrinth Seal

Labyrinth seals are used in turbo-machinery for reducing the leakage of working fluid. The energy lost by the fluid passing through the gap between labyrinth seal and rotor causes the reduction in leakage rate. But the fluid in between the labyrinth seal and rotor induce various forces (radial and tangential forces). These forces can be represented by certain numbers of coefficients, such as st...

متن کامل

Flow Seals Parameters Analysis For Rotors

The interaction of work fluid mechanics with that of the rotary system itself, basically composed of axes, bearings and rotors, is performed by inserting equivalent dynamic coefficients in the mathematical model of the rotor, the latter being obtained by the finite element method. In this paper, the dynamic coefficients of inertia, stiffness and damping of the flat seals analyzed here are evalu...

متن کامل

CFD Comparison to 3D Laser Anemometer and Rotordynamic Force Measurements for Grooved Liquid Annular Seals

A pressure-based computational fluid dynamics (CFD) code is employed to calculate the flow field and rotordynamic forces in a whirling, grooved liquid annular seal. To validate the capabilities of the CFD code for this class of problems, comparisons of basic fluid dynamic parameters are made to three-dimensional laser Doppler anemometer (LDA) measurements for a spinning, centered grooved seal. ...

متن کامل

Theoretical Study of Fluid Forces

Along with the developments of high-speed and highperformance turbomachines, there has been increasing occurrence of rotational speeds higher than the first critical speed. Under these circumstances, turbomachines may suffer from severe vibration and rotor whirl caused by fluid-dynamic forces. As possible causes of whirling instabilities, fluid forces on journal bearings and seals are well know...

متن کامل

Viscous Models Comparison in Water Impact of Twin 2D Falling Wedges Simulation by Different Numerical Solvers

In this paper, symmetric water entry of twin wedges is investigated for deadrise angle of 30 degree. Three numerical simulation of a symmetric impact, considering rigid body dynamic equations of motion in two-phase flow is presented. The two-phase flow around the wedges is solved by Finite Element based on Finite Volume method (FEM-FVM) which is used in conjunction with Volume of Fluid (VOF) sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009